Extract Inner Tuning Archives
Source:R/extract_inner_tuning_archives.R
extract_inner_tuning_archives.Rd
Extract inner tuning archives of nested resampling.
Implemented for mlr3::ResampleResult and mlr3::BenchmarkResult.
The function iterates over the AutoTuner objects and binds the tuning archives to a data.table::data.table()
.
AutoTuner must be initialized with store_tuning_instance = TRUE
and mlr3::resample()
or mlr3::benchmark()
must be called with store_models = TRUE
.
Arguments
- x
- unnest
(
character()
)
Transforms list columns to separate columns. By default,x_domain
is unnested. Set toNULL
if no column should be unnested.- exclude_columns
(
character()
)
Exclude columns from result table. Set toNULL
if no column should be excluded.
Data structure
The returned data table has the following columns:
experiment
(integer(1))
Index, giving the according row number in the original benchmark grid.iteration
(integer(1))
Iteration of the outer resampling.One column for each hyperparameter of the search spaces.
One column for each performance measure.
runtime_learners
(numeric(1)
)
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation. This does not include potential overhead time.timestamp
(POSIXct
)
Time stamp when the evaluation was logged into the archive.batch_nr
(integer(1)
)
Hyperparameters are evaluated in batches. Each batch has a unique batch number.x_domain
(list()
)
List of transformed hyperparameter values. By default this column is unnested.x_domain_*
(any
)
Separate column for each transformed hyperparameter.resample_result
(mlr3::ResampleResult)
Resample result of the inner resampling.task_id
(character(1)
).learner_id
(character(1)
).resampling_id
(character(1)
).
Examples
# Nested Resampling on Palmer Penguins Data Set
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# create auto tuner
at = auto_tuner(
tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)
resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)
# extract inner archives
extract_inner_tuning_archives(rr)
#> iteration cp classif.ce x_domain_cp runtime_learners
#> <int> <num> <num> <num> <num>
#> 1: 1 -6.819407 0.04 0.001092369 0.005
#> 2: 1 -6.361894 0.04 0.001726095 0.005
#> 3: 1 -5.017906 0.04 0.006618373 0.005
#> 4: 1 -4.487537 0.04 0.011248315 0.004
#> 5: 2 -2.771268 0.08 0.062582599 0.005
#> 6: 2 -5.852816 0.08 0.002871801 0.022
#> 7: 2 -6.365882 0.08 0.001719224 0.004
#> 8: 2 -3.185002 0.08 0.041378177 0.020
#> timestamp warnings errors batch_nr resample_result task_id
#> <POSc> <int> <int> <int> <list> <char>
#> 1: 2024-12-18 10:09:40 0 0 1 <ResampleResult> iris
#> 2: 2024-12-18 10:09:40 0 0 2 <ResampleResult> iris
#> 3: 2024-12-18 10:09:40 0 0 3 <ResampleResult> iris
#> 4: 2024-12-18 10:09:40 0 0 4 <ResampleResult> iris
#> 5: 2024-12-18 10:09:40 0 0 1 <ResampleResult> iris
#> 6: 2024-12-18 10:09:40 0 0 2 <ResampleResult> iris
#> 7: 2024-12-18 10:09:41 0 0 3 <ResampleResult> iris
#> 8: 2024-12-18 10:09:41 0 0 4 <ResampleResult> iris
#> learner_id resampling_id
#> <char> <char>
#> 1: classif.rpart.tuned cv
#> 2: classif.rpart.tuned cv
#> 3: classif.rpart.tuned cv
#> 4: classif.rpart.tuned cv
#> 5: classif.rpart.tuned cv
#> 6: classif.rpart.tuned cv
#> 7: classif.rpart.tuned cv
#> 8: classif.rpart.tuned cv