This mlr3misc::Callback logs the hyperparameter configurations and the performance of the configurations to MLflow.
Examples
clbk("mlr3tuning.async_mlflow", tracking_uri = "http://localhost:5000")
#> <CallbackAsyncTuning:mlr3tuning.async_mlflow>: MLflow Connector
#> * Active Stages: on_eval_before_archive, on_eval_after_xs,
#> on_optimization_begin
if (FALSE) { # \dontrun{
rush::rush_plan(n_workers = 4)
learner = lrn("classif.rpart",
minsplit = to_tune(2, 128),
cp = to_tune(1e-04, 1e-1))
instance = TuningInstanceAsyncSingleCrit$new(
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE,
callbacks = clbk("mlr3tuning.rush_mlflow", tracking_uri = "http://localhost:8080")
)
tuner = tnr("random_search_v2")
tuner$optimize(instance)
} # }