mlr3tuning 1.4.0
CRAN release: 2025-06-04
- feat: Resample stages from
CallbackResampleare now available inCallbackBatchTuningandCallbackAsyncTuning. - fix: The
$predict_typewas written to the model even when theAutoTunerwas not trained. - feat: Internal tuned values are now visible in logs.
- BREAKING CHANGE: Remove internal search space argument.
- BREAKING CHANGE: The mlr3 ecosystem has a base logger now which is named
mlr3. Themlr3/bbotklogger is a child of themlr3logger and is used for logging messages from thebbotkandmlr3tuningpackage. - feat: Classes are now printed with the
clipackage.
mlr3tuning 1.3.0
CRAN release: 2024-12-17
- feat: Save
ArchiveAsyncTuningto adata.tablewithArchiveAsyncTuningFrozen. - perf: Save models on worker only when requested in
ObjectiveTuningAsync.
mlr3tuning 1.2.0
CRAN release: 2024-11-08
- feat: Add new callback
clbk("mlr3tuning.one_se_rule")that selects the the hyperparameter configuration with the smallest feature set within one standard error of the best. - feat: Add new stages
on_tuning_result_beginandon_result_begintoCallbackAsyncTuningandCallbackBatchTuning. - refactor: Rename stage
on_resulttoon_result_endinCallbackAsyncTuningandCallbackBatchTuning. - docs: Extend the
CallbackAsyncTuningandCallbackBatchTuningdocumentation. - compatibility: mlr3 0.22.0
- compatibility: Work with new irace 4.0.0
mlr3tuning 1.1.0
CRAN release: 2024-10-27
- fix: The
as_data_table()functions do not unnest thex_domaincolum anymore by default. - fix:
to_tune(internal = TRUE)now also works if non-internal tuning parameters require have an.extra_trafo. - feat: It is now possible to pass an
internal_search_spacemanually. This allows to use parameter transformations on the primary search space in combination with internal hyperparameter tuning. - refactor: The
Tunerpass extra information of the result in theextraparameter now.
mlr3tuning 1.0.1
CRAN release: 2024-09-10
- refactor: Replace internal tuning callback.
- perf: Delete intermediate
BenchmarkResultinObjectiveTuningBatchafter optimization.
mlr3tuning 1.0.0
CRAN release: 2024-06-29
- feat: Introduce asynchronous optimization with the
TunerAsyncandTuningInstanceAsync*classes. - BREAKING CHANGE: The
Tunerclass isTunerBatchnow. - BREAKING CHANGE: THe
TuningInstanceSingleCritandTuningInstanceMultiCritclasses areTuningInstanceBatchSingleCritandTuningInstanceBatchMultiCritnow. - BREAKING CHANGE: The
CallbackTuningclass isCallbackBatchTuningnow. - BREAKING CHANGE: The
ContextEvalclass isContextBatchTuningnow. - refactor: Remove hotstarting from batch optimization due to low performance.
- refactor: The option
evaluate_defaultis a callback now.
mlr3tuning 0.20.0
CRAN release: 2024-03-05
- compatibility: Work with new paradox version 1.0.0
- fix:
TunerIracefailed with logical parameters and dependencies. - Added marshaling support to
AutoTuner
mlr3tuning 0.19.1
CRAN release: 2023-11-20
- refactor: Speed up the tuning process by minimizing the number of deep clones and parameter checks.
- fix: Set
store_benchmark_result = TRUEifstore_models = TRUEwhen creating a tuning instance. - fix: Passing a terminator in
tune_nested()did not work.
mlr3tuning 0.19.0
CRAN release: 2023-06-26
- fix: Add
$phash()method toAutoTuner. - fix: Include
Tunerin hash ofAutoTuner. - feat: Add new callback that scores the configurations on additional measures while tuning.
- feat: Add vignette about adding new tuners which was previously part of the mlr3book.
mlr3tuning 0.18.0
CRAN release: 2023-03-08
- BREAKING CHANGE: The
methodparameter oftune(),tune_nested()andauto_tuner()is renamed totuner. OnlyTunerobjects are accepted now. Arguments to the tuner cannot be passed with...anymore. - BREAKING CHANGE: The
tunerparameter ofAutoTuneris moved to the first position to achieve consistency with the other functions. - docs: Update resources sections.
- docs: Add list of default measures.
- fix: Add
allow_hotstarting,keep_hotstart_stackandkeep_modelsflags toAutoTunerandauto_tuner().
mlr3tuning 0.17.2
CRAN release: 2022-12-22
- feat:
AutoTuneraccepts instantiated resamplings now. TheAutoTunerchecks if all row ids of the inner resampling are present in the outer resampling train set when nested resampling is performed. - fix: Standalone
Tunerdid not create aContextOptimization.
mlr3tuning 0.17.0
CRAN release: 2022-11-18
- feat: The methods
$importance(),$selected_features(),$oob_error()and$loglik()are forwarded from the final model to theAutoTunernow. - refactor: The
AutoTunerstores the instance and benchmark result ifstore_models = TRUE. - refactor: The
AutoTunerstores the instance ifstore_benchmark_result = TRUE.
mlr3tuning 0.16.0
CRAN release: 2022-11-08
- feat: Add new callback that enables early stopping while tuning to
mlr_callbacks. - feat: Add new callback that backups the benchmark result to disk after each batch.
- feat: Create custom callbacks with the
callback_batch_tuning()function.
mlr3tuning 0.15.0
CRAN release: 2022-10-21
- fix:
AutoTunerdid not acceptTuningSpaceobjects as search spaces. - feat: Add
ti()function to create aTuningInstanceSingleCritorTuningInstanceMultiCrit. - docs: Documentation has a technical details section now.
- feat: New option for
extract_inner_tuning_results()to return the tuning instances.
mlr3tuning 0.14.0
CRAN release: 2022-08-25
- feat: Add option
evaluate_defaultto evaluate learners with hyperparameters set to their default values. - refactor: From now on, the default of
smoothisFALSEforTunerGenSA.
mlr3tuning 0.13.0
CRAN release: 2022-04-06
- feat: Allow to pass
Tunerobjects asmethodintune()andauto_tuner(). - docs: Link
Tunerto help page ofbbotk::Optimizer. - feat:
Tunerobjects have the optional field$labelnow. - feat:
as.data.table()functions for objects of classDictionaryhave been extended with additional columns.
mlr3tuning 0.12.1
CRAN release: 2022-02-25
- feat: Add a
as.data.table.DictionaryTunerfunction. - feat: New
$help()method which opens the manual page of aTuner.
mlr3tuning 0.12.0
CRAN release: 2022-02-17
- feat:
as_search_space()function to create search spaces fromLearnerandParamSetobjects. Allow to passTuningSpaceobjects assearch_spaceinTuningInstanceSingleCritandTuningInstanceMultiCrit. - feat: The
mlr3::HotstartStackcan now be removed after tuning with thekeep_hotstart_stackflag. - feat: The
Archivestores errors and warnings of the learners. - feat: When no measure is provided, the default measure is used in
auto_tuner()andtune_nested().
mlr3tuning 0.11.0
CRAN release: 2022-02-02
- fix:
$assign_result()method inTuningInstanceSingleCritwhen search space is empty. - feat: Default measure is used when no measure is supplied to
TuningInstanceSingleCrit.
mlr3tuning 0.10.0
CRAN release: 2022-01-20
- Fixes bug in
TuningInstanceMultiCrit$assign_result(). - Hotstarting of learners with previously fitted models.
- Remove deep clones to speed up tuning.
- Add
store_modelsflag toauto_tuner(). - Add
"noisy"property toObjectiveTuning.
mlr3tuning 0.9.0
CRAN release: 2021-09-14
- Adds
AutoTuner$base_learner()method to extract the base learner from nested learner objects. -
tune()supports multi-criteria tuning. - Allows empty search space.
- Adds
TunerIracefromiracepackage. -
extract_inner_tuning_archives()helper function to extract inner tuning archives. - Removes
ArchiveTuning$extended_archive()method. Themlr3::ResampleResultsare joined automatically byas.data.table.TuningArchive()andextract_inner_tuning_archives().
mlr3tuning 0.8.0
CRAN release: 2021-03-12
- Adds
tune(),auto_tuner()andtune_nested()sugar functions. -
TuningInstanceSingleCrit,TuningInstanceMultiCritandAutoTunercan be initialized withstore_benchmark_result = FALSEandstore_models = TRUEto allow measures to access the models. - Prettier printing methods.
mlr3tuning 0.7.0
CRAN release: 2021-02-11
- Fix
TuningInstance*$assign_result()errors with required parameter bug. - Shortcuts to access
$learner(),$learners(),$learner_param_vals(),$predictions()and$resample_result()from benchmark result in archive. -
extract_inner_tuning_results()helper function to extract inner tuning results.
mlr3tuning 0.5.0
CRAN release: 2020-12-07
- Adds
TunerCmaesfromadagiopackage. - Fix
predict_typeinAutoTuner. - Support to set
TuneTokeninLearner$param_setand create a search space from it. - The order of the parameters in
TuningInstanceSingleCritandTuningInstanceSingleCritchanged.
mlr3tuning 0.4.0
CRAN release: 2020-10-07
- Option to control
store_benchmark_result,store_modelsandcheck_valuesinAutoTuner.store_tuning_instancemust be set as a parameter during initialization. - Fixes
check_valuesflag inTuningInstanceSingleCritandTuningInstanceMultiCrit. - Removed dependency on orphaned package
bibtex.
mlr3tuning 0.3.0
CRAN release: 2020-09-08
- Compact in-memory representation of R6 objects to save space when saving mlr3 objects via
saveRDS(),serialize()etc. -
ArchiveisArchiveTuningnow which stores the benchmark result in$benchmark_result. This change removed the resample results from the archive but they can be still accessed via the benchmark result. - Warning message if external package for tuning is not installed.
- To retrieve the inner tuning results in nested resampling,
as.data.table(rr)$learner[[1]]$tuning_resultmust be used now.
mlr3tuning 0.2.0
CRAN release: 2020-07-28
-
TuningInstanceis nowTuningInstanceSingleCrit.TuningInstanceMultiCritis still available for multi-criteria tuning. - Terminators are now accessible by
trm()andtrms()instead ofterm()andterms(). - Storing of resample results is optional now by using the
store_resample_resultflag inTuningInstanceSingleCritandTuningInstanceMultiCrit -
TunerNLoptradds non-linear optimization from the nloptr package. - Logging is controlled by the
bbotklogger now. - Proposed points and performance values can be checked for validity by activating the
check_valuesflag inTuningInstanceSingleCritandTuningInstanceMultiCrit.
mlr3tuning 0.1.3
- mlr3tuning now depends on the
bbotkpackage for basic tuning objects.Terminatorclasses now live inbbotk. As a consequenceObjectiveTuninginherits frombbotk::Objective,TuningInstancefrombbotk::OptimInstanceandTunerfrombbotk::Optimizer -
TuningInstance$param_setbecomesTuningInstance$search_spaceto avoid confusion as theparam_setusually contains the parameters that change the behavior of an object. - Tuning is triggered by
$optimize()instead of$tune()
