Subclass for non-linear optimization (NLopt). Calls nloptr::nloptr from package nloptr.
Source
Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/nlopt.
Details
The termination conditions stopval
, maxtime
and maxeval
of nloptr::nloptr()
are deactivated and replaced by the bbotk::Terminator subclasses.
The x and function value tolerance termination conditions (xtol_rel = 10^-4
, xtol_abs = rep(0.0, length(x0))
, ftol_rel = 0.0
and ftol_abs = 0.0
) are still available and implemented with their package defaults.
To deactivate these conditions, set them to -1
.
Logging
All Tuners use a logger (as implemented in lgr) from package
bbotk.
Use lgr::get_logger("bbotk")
to access and control the logger.
Optimizer
This Tuner is based on bbotk::OptimizerNLoptr which can be applied on any black box optimization problem. See also the documentation of bbotk.
Parameters
algorithm
character(1)
eval_g_ineq
function()
xtol_rel
numeric(1)
xtol_abs
numeric(1)
ftol_rel
numeric(1)
ftol_abs
numeric(1)
start_values
character(1)
Createrandom
start values or based oncenter
of search space? In the latter case, it is the center of the parameters before a trafo is applied.
For the meaning of the control parameters, see nloptr::nloptr()
and
nloptr::nloptr.print.options()
.
The termination conditions stopval
, maxtime
and maxeval
of
nloptr::nloptr()
are deactivated and replaced by the Terminator
subclasses. The x and function value tolerance termination conditions
(xtol_rel = 10^-4
, xtol_abs = rep(0.0, length(x0))
, ftol_rel = 0.0
and
ftol_abs = 0.0
) are still available and implemented with their package
defaults. To deactivate these conditions, set them to -1
.
Resources
There are several sections about hyperparameter optimization in the mlr3book.
Learn more about tuners.
The gallery features a collection of case studies and demos about optimization.
Use the Hyperband optimizer with different budget parameters.
Progress Bars
$optimize()
supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress()
to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress")
.
Super classes
mlr3tuning::Tuner
-> mlr3tuning::TunerFromOptimizer
-> TunerNLoptr
Examples
# Hyperparameter Optimization
# \donttest{
# load learner and set search space
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)
# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(
tuner = tnr("nloptr", algorithm = "NLOPT_LN_BOBYQA"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")
)
# best performing hyperparameter configuration
instance$result
#> cp learner_param_vals x_domain classif.ce
#> 1: -6.063506 <list[2]> <list[1]> 0.06086957
# all evaluated hyperparameter configuration
as.data.table(instance$archive)
#> cp classif.ce x_domain_cp runtime_learners timestamp
#> 1: -6.063506 0.06086957 0.0023262304 0.008 2023-06-27 06:09:43
#> 2: -6.063506 0.06086957 0.0023262304 0.008 2023-06-27 06:09:44
#> 3: -6.063506 0.06086957 0.0023262304 0.008 2023-06-27 06:09:44
#> 4: -4.336567 0.06086957 0.0130813547 0.007 2023-06-27 06:09:44
#> 5: -7.790445 0.06086957 0.0004136688 0.008 2023-06-27 06:09:44
#> 6: -6.046237 0.06086957 0.0023667518 0.008 2023-06-27 06:09:44
#> 7: -6.080776 0.06086957 0.0022864027 0.008 2023-06-27 06:09:44
#> 8: -6.061779 0.06086957 0.0023302511 0.008 2023-06-27 06:09:44
#> 9: -6.065233 0.06086957 0.0023222166 0.008 2023-06-27 06:09:44
#> 10: -6.063506 0.06086957 0.0023262304 0.007 2023-06-27 06:09:44
#> batch_nr warnings errors resample_result
#> 1: 1 0 0 <ResampleResult[21]>
#> 2: 2 0 0 <ResampleResult[21]>
#> 3: 3 0 0 <ResampleResult[21]>
#> 4: 4 0 0 <ResampleResult[21]>
#> 5: 5 0 0 <ResampleResult[21]>
#> 6: 6 0 0 <ResampleResult[21]>
#> 7: 7 0 0 <ResampleResult[21]>
#> 8: 8 0 0 <ResampleResult[21]>
#> 9: 9 0 0 <ResampleResult[21]>
#> 10: 10 0 0 <ResampleResult[21]>
# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))
# }