TunerNLoptr class that implements non-linear optimization. Calls nloptr::nloptr from package nloptr.

Source

Johnson SG (2020). “The NLopt nonlinear-optimization package.” http://github.com/stevengj/nlopt.

Details

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated and replaced by the bbotk::Terminator subclasses. The x and function value tolerance termination conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate these conditions, set them to -1.

Dictionary

This Tuner can be instantiated via the dictionary mlr_tuners or with the associated sugar function tnr():

mlr_tuners$get("nloptr")
tnr("nloptr")

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk") to access and control the logger.

Parameters

algorithm

character(1)

x0

numeric()

eval_g_ineq

function()

xtol_rel

numeric(1)

xtol_abs

numeric(1)

ftol_rel

numeric(1)

ftol_abs

numeric(1)

For the meaning of the control parameters, see nloptr::nloptr() and nloptr::nloptr.print.options().

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated and replaced by the Terminator subclasses. The x and function value tolerance termination conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate these conditions, set them to -1.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerNLoptr

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage

TunerNLoptr$new()


Method clone()

The objects of this class are cloneable with this method.

Usage

TunerNLoptr$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (FALSE) { library(mlr3) library(paradox) library(data.table) search_space = ParamSet$new(list( ParamDbl$new("cp", lower = 0.001, upper = 0.1) )) # We use the internal termination criterion xtol_rel terminator = trm("none") instance = TuningInstanceSingleCrit$new( task = tsk("iris"), learner = lrn("classif.rpart"), resampling = rsmp("holdout"), measure = msr("classif.ce"), search_space = search_space, terminator = terminator ) tt = tnr("nloptr", x0 = 0.1, algorithm = "NLOPT_LN_BOBYQA") # modifies the instance by reference tt$optimize(instance) # returns best configuration and best performance instance$result # allows access of data.table of full path of all evaluations instance$archive }